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Abstract
The article concerns potential harmful effects of exposure to lead. Although the occurrence of severe lead poisoning has 
receded in several countries, occupational exposure resulting in moderate and clinically symptomatic toxicity is still com-
mon. An earlier and precise characterization of an individual response is obligatory in order to assess the possible risks for 
human health. Biomarkers may fill important gaps in the path from exposure to a disease. Specifically speaking, emerg-
ing (DNA double strand breaks and telomeric DNA erosion) and validated (micronuclei induction and chromosomal 
aberrations) biomarkers of genotoxicity seem to provide evidence for the assessment of molecular and cellular damage. 
Moreover, identification of genetic variability with a key role in modulating genotoxic damage may help minimize risks for 
susceptible subjects. Further investigations are naturally needed to properly define their diagnostic and/or prognostic value 
as “early warning” signs of a long-term risk for a subsequent clinically overt disease.
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INTRODUCTION
Lead is a common environmental and occupational con-
taminant distributed worldwide. It is used in many indus-
trial processes (e.g., household renovation, manufacturing 
and recycling of batteries, car repair, production of plas-
tics, ceramics, paints and pigments) that may involve hu-
man exposure to this metal.
The battery industry is one of the leading sources of occu-
pational lead exposure occurring in a variety of ways during 
processes of batteries manufacturing and recycling. Partic-
ularly, the battery industry uses an estimated 80% of an-
nual primary lead (mined) and secondary lead (recycled) 

production [1]. Approximately 50% of global lead produc-
tion is derived from lead batteries recycling [2].
Thus, occupational exposure to lead poses a serious threat 
to the health of industrial workers. Lead smelting and 
manufacture of lead alloy battery grids constitute major 
sources of lead oxides [3].
Contaminated air inside the battery industry factories 
poses a high risk of air-borne lead exposure. According to 
the World Health Organization (WHO), for each 1 mg/m3 
increase in the concentration of lead in the air, the blood 
lead value increases by approximately 1.6 mcg/dl. After 
absorption, lead enters blood stream and almost 95% of 
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years to better understand the relationship between envi-
ronmental and/or occupational hazards and their effects 
on human health. The use of biomarkers is expected to 
identify important mechanistic insights into pathogenesis 
of disease processes and to reduce the time gap between 
exposure and recognition of disease-relevant effects. One 
of the goals of molecular epidemiology studies is to make 
use of biomarkers to develop more effective strategies to 
reduce the risk, such as: exposure monitoring, health sur-
veillance and individual risk characterization [13,14].
According to the International Program of Chemical Safe-
ty (IPCS), biomarkers are generally classified into 3 ma-
jor categories i.e., exposure, effect and susceptibility [12]. 
Biomarkers of exposure are exogenous substances or 
their metabolites, or the products of an interaction be-
tween a xenobiotic agent and some target molecule or 
cell, which are measured in a given part within an organ-
ism. Specifically, the most frequently used biomarker of 
body lead burden is the blood lead concentration (blood 
lead level, BPb), reflecting a recent exposure level [15,16]. 
Additionally, measurement of δ-aminolevulinic acid de-
hydratase (ALAD) activity and erythrocyte protoporphy-
rin (EP) concentration, biomarkers of Pb effect and/or 
exposure, provides an even more accurate evaluation of 
long-term cumulative exposure to lead [15].
Biomarkers of effect represent a measurable biochemical, 
physiological, behavioral or other alteration within an or-
ganism that, depending on the magnitude, can be recog-
nized as associated with an established or possible health 
impairment. Therefore, biomarkers of effect indicate 
early signals of biologic effects preceding a disease and/or 
predict development and presence of a disease.
Finally, biomarkers of susceptibility (e.g., genetic poly-
morphisms) are indicators of an inherent or acquired abil-
ity of an organism to respond to the challenge of exposure 
to a specific xenobiotic agent. Indeed, genetic screening 
can be applied both as an indicator of susceptibility to oc-
cupational hazards or as a predictor of future health.

it binds to erythrocytes [4]. Thus, exposure to lead is 
a great hazard for human health affecting a variety of fun-
damental biochemical processes [5].
The International Agency for Research on Cancer (IARC) 
classified it as a possible human carcinogen (Group 2B) [6] 
and its inorganic compounds as probable human carcinogens 
(Group 2A) [7]. Indeed, several epidemiological studies have 
linked exposure to lead to the increased incidence of cancers 
such as stomach, lung and bladder cancers [8]. Additionally, 
lead may cause numerous adverse health effects, including 
damage to the nervous, renal, cardiovascular, immune, and 
reproductive systems [9], as well as effects on bones and 
teeth [10,11]. However, epidemiologic evidence on many of 
the health effects of lead exposure has not been well-estab-
lished, with uncertainties in latency, dose response relation-
ships and population differences. Furthermore, epidemio-
logical studies suffer from several key limitations, mainly due 
to the the small number of people, which makes it difficult to 
achieve sufficient statistical power in epidemiological studies, 
and the lack of information on potential confounders.
Finally, inter-individual genetic variability in metabolism 
capacity may also contribute to the variation in susceptibil-
ity to the effect of environmental stressors. Future insights 
into the health risks of exposure to lead require a more 
accurate characterization of an individual response. Bio-
markers, defined as ‘‘any measurement reflecting an in-
teraction between a biological system and an environmen-
tal agent” [12], may fill important gaps in the path from 
exposure to a disease by identifying high-risk groups of 
the overexposed or hypersusceptible subjects.
The purpose of this review is to discuss application of cel-
lular and molecular biomarkers in the evaluation of health 
risks from occupational exposure to lead.

FROM EXPOSURE TO HUMAN HEALTH EFFECTS
Biomarkers as a missing link
Incorporation of molecular and cellular biomarkers into 
epidemiological studies has grown exponentially in recent 
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and/or zinc in enzymes involved in DNA replication, fi-
delity, and repair processes [24–26]. Below, there are re-
ported the most frequently emerging (DNA double strand 
breaks and telomeric DNA erosion) and validated (micro-
nucleus test and chromosomal aberrations) biomarkers 
of DNA lesions induced by toxic effects from occupational 
exposure to lead.

DNA double strand breaks (DSBs)
DNA double strand breaks (DSBs) constitute the most 
deleterious form of DNA damage, which, if not correctly 
repaired, can initiate genomic instability and mutations.
The histone H2AX, known as the “histone guard-
ian of the genome,” is essential for initial recognition 
of DNA double strand breaks and a specific and efficient 
coordination of DNA repair mechanisms [27]. The his-
tone H2AX is rapidly phosphorylated (γ-H2AX) and there 
is a constant number or percentage of γ-H2AX formed 
per DSB. This highly amplified response can be visualized 
as a γ-H2AX focus in the chromatin that can be detect-
ed with the appropriate antibody [28–30]. Phosphoryla-
tion of the histone H2AX (γ-H2AX form) is required for 
concentration and stabilization of DNA repair proteins, 
and plays a key role in both non-homologous end-join-
ing (NHEJ) and homologous recombination (HR) repair 
pathways [31].
Double strand breaks may be induced by exogenous 
agents, such as ionizing radiation or drug [32], but they 
can also occur spontaneously during cellular processes at 
quite significant frequencies.
Molecular and cellular responses of human cells ex-
posed to lead, have been recently investigated by focus-
ing notably on DSB formation and repair. Gastaldo et al. 
have examined DNA damage response in human 
cells exposed to lead nitrate (Pb(NO3)2) and its conse-
quences upon the ataxia telangiectasia mutated (ATM-
dependent) stress signaling, cell cycle progression 
and cell death [33]. The authors have found that lead 

GENOTOXICITY AND OCCUPATIONAL EXPOSURE
Biomarkers of effect
Although a number of studies in different biological sys-
tems have used different biomarkers to evaluate toxic ef-
fects of lead, there are still conflicting results regarding 
its genotoxicity [17]. Lead can interfere with cellular re-
dox regulation and induce oxidative stress contributing 
to DNA damage and inhibition of major DNA repair 
systems and thus, resulting in genomic instability and 
accumulation of critical mutations (Figure 1) [18–23]. 
When combined with other DNA damaging agents (such 
as ultraviolet (UV) light, X-rays and certain chemicals), 
lead seems to result in an inhibition of DNA repair and 
an enhancement of genotoxicity by substituting calcium 

Lead exposure

Impaired antioxidant defence

Reactive oxygen

species (ROS)

DNA damage Defective DNA repair

Cell senescence

Cell death
Mutagenicity

Fig. 1. Possible mechanism of lead-induced genotoxicity
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To date, little is known about changes in telomere length 
after occupational exposure to lead. A recent study has 
shown that lead exposure was associated with telomere 
shortening in leukocytes of Chinese battery manufactur-
ing plant workers and directly proportional to the body 
lead burden, suggesting a possible link between lead expo-
sure and the loss of telomere maintenance [38]. Although 
this study has only shown an association between lead 
exposure and telomere shortening, these results took on 
new significance in the light of the results subsequently 
presented by Pottier et al., which have strongly suggested 
a causal link between lead exposure at the cellular level and 
the loss of telomere maintenance [39]. The authors have 
indicated that the lead-induced generation of γ-H2Ax foci 
at the end of chromosomes or near telomeres seems to be 
due to perturbation of telomere replication, in particular 
on the lagging DNA strand [39].

Micronuclei induction
Lead, as well as other heavy metals, can cause cytogenetic 
damage with the induction of micronuclei (MN) [17,40–
42], but the mechanisms of this phenomenon are still 
unknown. Micronuclei are small extranuclear bodies re-
sulting from chromosome breaks or whole chromosomes 
lagging behind during anaphase. Micronuclei are easy 
to score both manually and using automated microscopy 
slide scanning and image analysis systems. They are scored 
in peripheral blood lymphocytes in the 1st interphase af-
ter cell division [43,44]. The cytokinesis-block procedure 
using cytochalasin B arrests division of cytoplasm or cy-
tokinesis without inhibiting nuclear division and enables 
cells that may express chromosome damage as MN to be 
accumulated and recognized as binucleated (BN) cells. 
The frequency of MN in BN cells provides a consistent 
and reliable measure of chromosome damage [45,46].
Several studies have used MN assay to evaluate potential 
genotoxic effects induced by exposure to lead in individu-
als exposed in their workplaces (Table 1).

contamination generated late unrepairable DSBs that 
influenced the ATM-dependent stress signaling path-
way by favoring propagation of errors. Particularly, as 
observed with anti-pH2AX immunofluorescence, expo-
sure to lead resulted in a formation of late DSBs and 
inhibited the non-homologous end-joining repair pro-
cess by preventing DNA-pyruvate kinase (PK) kinase 
activity, while the Meiotic Recombination 11 (MRE11)-
dependent repair pathway was exacerbated. Lead con-
tamination triggered a successive synchronization of 
cells in the G2/M phase, in which the RAD51 recombi-
nase (RAD51)-dependent homologous recombination 
was found to be activated [33].
Recently, an in vivo and in vitro study has investigat-
ed DSB formation in lymphocytes of workers exposed to 
lead. The authors have suggested that DSBs of the exposed 
group were significantly higher than those of the control 
group and increased in lymphocytes incubated at higher 
doses [34].

Telomere length erosion
Telomeres are specialized structures at the ends of chro-
mosomes, and consist of tandem TTAGGG repeats 
bound to an array of specialized proteins that seques-
ter telomeric DNA preventing it from being recognized 
as DNA damage [35]. In somatic cells, telomeres shorten 
at each cell division representing a mitotic clock of the se-
nescence process. Telomeric DNA erosion is an important 
marker of cellular aging, and is associated with a greater 
risk of cancer and cardiovascular disease [35,36]. Telo-
meres are highly sensitive to oxidative stress due to less ef-
fective DNA repair than for intra-chromosomal sequenc-
es [37]. Specific targeting of telomeres could, thus, be indi-
rectly attributed to lead induced oxidative stress. Specific 
alteration of this chromosomal region may have drastic 
consequences on the formation and long-term transmis-
sion of chromosomal rearrangements via their interplay 
with the natural aging of cells [37].
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Cytogenetic alterations detected by CA, but also by MN, 
reflect exposures that may have been experienced in 
the few months before a sample collection. Nevertheless, 
exposure in the previous 2–3 years or even in a much longer 
period of time may equally affect these biomarkers [60].
There are contrasting results regarding the capacity of 
lead to cause chromosomal damage in exposed individuals 
as reviewed by Garcia-Leston et al. [17].
Some studies have reported increases in CA frequency 
in the subjects exposed to lead. On the other hand, oth-
er researchers have found no effects of lead exposure 
on CA frequency [17]. More recently, Coelho et al. have 
evaluated the extent of chromosomal alterations caused 
by environmental and occupational exposure in individu-
als previously tested for metal(loid) levels in different 
biological matrices, and the possible modulating role of 
genetic polymorphisms [41]. The results of the study have 
shown that lead contamination in the Panasqueira mine 
area induced genotoxic damage both in individuals work-
ing in the mine and living in the area. The observed effects 
were closely associated with the internal exposure dose 
and were more evident in susceptible genotypes [41].

BIOMARKERS OF INDIVIDUAL SUSCEPTIBILITY
Single nucleotide polymorphisms (SNPS) 
in genes involved in DNA repair and lead toxicokinetics
The most common form of a genetic variation in the hu-
man population occurs as single nucleotide polymor-
phisms (SNPs). Identification of genetic polymorphisms, 
which have a key role in modulating genotoxic damage, 
may help minimize risks for susceptible subjects [61].
Genes involved in DNA repair mechanisms play a critical 
role in the maintenance of genome integrity, and variation in 
these genes may modulate the repair capacity. Single nucleo-
tide polymorphisms in DNA repair genes involved in base 
excision repair (BER) pathway, NHEJ repair pathway and 
oxidative stress have been analyzed in different works as sus-
ceptibility biomarkers of occupational genotoxicity [41,57]. 

The vast majority of researchers have demonstrated an 
increase in MN rate in exposed individuals compared 
with control groups, consequently highlighting the pos-
sible role of MN assay as a stable indicator of chronic 
lead exposure [21,26,40,42,47–58].
The only study that have not found any genotoxic effect us-
ing MN assay was that conducted by Hoffmann et al. [59]. 
They have investigated the effect of lead on the genetic 
material in a group of car repair and radiator recondition-
ing workers reporting an insignificant increase in MN in 
cultured peripheral blood lymphocytes of workers who 
were exposed to lead [59].
Evaluating a possible association between MN and bio-
markers of Pb exposure (BPb, ALAD and EP), Ka-
suba et al. have observed a negative correlation be-
tween ALAD and MN frequency, while EP positively cor-
related with MN [40]. Vaglenov et al. have also reported 
a significant correlation between MN formation and 
lead levels in workers from a storage battery plant [26]. 
When the authors examined 4 exposure levels, i.e., very 
low exposure (< 1.2 μM/l), low exposure (1.2–1.91 μM/l), 
high exposure (1.92–2.88 μM/l), and very high expo-
sure (> 2.88 μM/l), they have found significant differences 
in MN induction, concluding that occupational exposure 
to levels of lead higher than 1.2 μM/l may pose an increase 
in a genetic risk [26].
On the contrary, Pinto et al. have reported that occupa-
tional exposure time, but not the levels of lead, was signifi-
cantly associated with cytogenetic damage [50].

Chromosomal aberrations
Chromosomal aberrations (CA) can result from either 
a variation in chromosome number or from structural 
changes. These events may occur spontaneously or can be 
induced by environmental agents such as chemicals, ra-
diation and UV light. Disruption of DNA sequence or an 
excess or deficiency of the genes carried on the affected 
chromosomes results in a mutation.
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CONCLUSIONS
Occupational exposure to lead is clearly a major public 
health hazard with global dimension. Public health mea-
sures should continue to be aimed at reduction and pre-
vention of exposure to lead by minimizing lead-containing 
emissions that result in human exposure [72]. Although 
the occurrence of severe lead poisoning has largely re-
ceded in many countries, occupational exposure to lead 
resulting in moderate and clinically symptomatic toxicity 
is still common.
Future insights into human health risk assessment re-
quire an earlier and more accurate characterization of 
an individual response. Contextually, biomarkers are 
key elements and are the “early warning” signs capable 
of identifying a long-term risk of a subsequent clinically 
overt disease that can help define individual risks and 
potential intervention strategies. Genotoxicity biomark-
ers should prove very important for evaluating the extent 
of damage that may be modulated by individual genetic 
susceptibility.
Additionally, recent progress in “-omic” technologies of-
fers an unprecedented opportunity to characterize new 
biomarkers of exposure and inter-individual variability in 
response to exposure, as well as to better define the health 
risk from occupational exposure [73]. Identification of 
such biomarkers may be useful for identifying a subset of 
individuals who are more vulnerable to lead exposure, an-
ticipating delayed health outcomes and providing a great-
er potential for preventive measures.
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